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Geometry of lipid vesicle adhesion
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The adhesion of a lipid membrane vesicle to a fixed substrate is examined from a geometrical point of view.
This vesicle is described by the Helfrich Hamiltonian quadratic in the mean curvature; it interacts by contact
with the substrate, with an interaction energy proportional to the area of contact. We identify the constraints on
the geometry at the boundary of the shared surface. The result is interpreted in terms of the balance of the force
normal to this boundary. No assumptions are made either on the symmetry of the vesicle or on that of the
substrate. The strong bonding limit as well as the effect of curvature asymmetry on the boundary are discussed.
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I. INTRODUCTION

Geometrical models provide a surprisingly robust ph
nomenological description of the equilibria of physical me
branes@1–5#. The Hamiltonian that describes the membra
is constructed as a sum of geometrical scalars; in particu
lipid membrane vesicles are well approximated by one tha
quadratic in the mean curvature@6–8#. Such models can als
be extended to model adhesion between vesicles or betw
a vesicle and a rigid substrate@9–11#, processes that ar
increasingly relevant to biophysics.~Two reviews are Refs
@12,13#.! In this paper, we examine one important aspect
this problem, the geometry of the contact boundary, whi
surprisingly, does not appear to have been examined in
generality.

To model the interaction one can exploit, as for an is
lated membrane, the geometrical scalars characterizing
surface of contact as well, perhaps, as its boundary. As s
this is not a model of the adhesion of individual molecules
specific sites on the membrane, a task that lies beyond
scope of this continuum description.

In its simplest form, which is the one we consider, t
interaction Hamiltonian is proportional to~minus! the area of
contact. The energy associated with the boundary of the c
tact region is ignored. Axially symmetric configurations ha
been studied thoroughly in this ‘‘ideal’’ context@11,14#. In
Ref. @15#, the adhesion of ‘‘linear’’ vesicles in two dimen
sions was considered. More recently, in Refs.@16,17# and
@18# perturbation theory has been developed in the str
bonding limit, in which the bending energy itself is sma
compared to that of adhesion. Nonaxially symmetric co
figurations of an adhering vesicle under the effect of grav
were studied in Ref.@19# using numerical techniques. W
note that a more realistic treatment of adhesion conside
chemically structured or rough surfaces has been provide
Ref. @20#.

For definiteness, we will assume that one of the intera
ing surfaces is a fixed substrate, although it is simple to re
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this restriction. We willnot, however, assume that this su
face is flat. More significantly, we relax the assumption th
the vesicle geometry is axially symmetric. In previous a
ally symmetric work the geometric origins of the bounda
conditions are not clear, because the technique is tailore
finely to the symmetry; nor is it clear to what extent they w
survive the relaxation of symmetry. This is a less than de
able situation in a model that is intrinsically geometric
begin with. Of course, one is also interested in geomet
that are not axially symmetric: to mention just one conte
where this would be the case, we note that all configurati
with a negative area difference appear to be inconsistent
axial symmetry@21#. Indeed, it may also be energetical
favorable for an initially axially symmetric vesicle to adhe
to a substrate in a manner that breaks its original symme

Our first approach will be to search for minima of th
energy. To do this, we will exploit the geometrical fram
work introduced recently to describe lipid membranes@22#,
and extended to accomodate edge effects in Ref.@23#. The
extension to adhering geometries introduces its own sub
ties due to potential discontinuities at the boundary of c
tact: the energy is stationary only when appropriate c
straints on the vesicle geometry are satisfied on
boundary. Our treatment of the problem is divided into thr
parts. To establish our bearings, we begin in Sec. II with
rederivation of the Young equation for a liquid droplet whe
the bonding to the wall competes with the surface tension
the drop. In Sec. III, we consider lipid vesicles described
the Helfrich Hamiltonian. Discontinuities at the boundary
the contact region are discussed in Sec. III A. In Sec. III
establishing contact with the recent work in this directio
we study the strong bonding limit in which the bending e
ergy is ignored but any asymmetry between the layers
accounted for. In this limit, discontinuities at the boundary
the contact region are not smoothed; a nonvanishing con
angle does not imply a divergent energy. Finally, in Sec.
we consider the general case. The finiteness of the curva
energy necessarily eliminates an angle of contact betw
the vesicle and the substrate; stationary energy comple
fixes the curvature at the boundary. This generalizes the s
ation for axially symmetric shapes, where as is well know
the curvature is completely fixed at the boundary@11#: the
©2002 The American Physical Society04-1
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R. CAPOVILLA AND J. GUVEN PHYSICAL REVIEW E66, 041604 ~2002!
vesicle radius of curvature normal to the line of contact
inversely proportional to the square root of the bo
strength, the tangential radius as well as the potentially n
vanishing off-diagonal curvature are both completely fix
by the substrate geometry. We demonstrate that the boun
condition is not modified by a curvature asymmetry. In S
V, we use the expressions for the internal stress tensor
lipid membrane developed in Ref.@22#, to provide a surpris-
ingly simple interpretation of the boundary condition
terms of the balance of forces at the boundary for a
substrate. We end with some brief conclusions.

II. SURFACE TENSION DOMINATED MODEL

It is worthwhile to first review the adhesion of a drop
liquid of fixed volume onto a surface. Here the focus is
the competition between the surface tension of the liquid
the attraction between the liquid surface and the substr
The former tends to reduce the surface area of the drop
latter to increase the area of contact. The energy is given
sum of three terms

F5mA2wAcontact2p~V2V0!. ~1!

The energy associated with the constant surface tensionm of
the drop is proportional to its total surface areaA; that asso-
ciated with adhesion is proportional to~minus! the area of
contactAcontact between the drop and the substrate. The
rameterw is the attractive contact potential. The third ter
involving the Lagrange multiplierp implements the volume
constraint fixing the enclosed drop volumeV at the valueV0.

The equilibrium drop configurations are those at wh
the energy~1! is stationary. The problem posed here diffe
from the standard isoperimetric problem in that the area
different positions on the surface gets weighted accordin
whether or not it lies in the contact region, which itself
determined by the outcome of the variational problem.
deed the contact surface might be weighted negatively.
physically realistic parameters, however, an equilibrium
realized. The energy is always bounded from below.

In equilibrium, the curvature of the drop’s surface w
suffer a discontinuity along the boundaryC of the contact
region. We parametrize the embedding of the free surfac
the droplet in three-dimensional space as follows:x
5X(ja), and the substratex5X̃( j̃a), a51,2. The energy is
a functional both ofX for the free surface andX̃ for the
region of contact. They coincide onC, X5X̃. See Fig. 1. We
now recast the first two terms appearing inF as (Afree is the
area of the free surface!

mA2wAcontact5mAfree1~m2w!Acontact

5mE
free

d2jAg1~m2w!E
contact

d2j̃Ag̃.

~2!

Hereg is the determinant of the metricgab induced on the
free surface given bygab5ea•eb , whereea5]aX are vec-
tors tangent to the surface. Similar definitions hold for t
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geometrical quantities, indicated with a tilde, associated w
the substrate. Note that the boundaryC may possess discon
nected components.

To derive the equations describing the equilibrium sha
of a droplet, let us consider a variation of the embedding
the free surface,X→X1dX. We let n to denote the unit
normal to the free surface. We decompose the displacem
with respect to the spatial basis adapted to this surfa
$ea ,n%: dX5Faea1F n. We have for the correspondin
variation of the induced metricdXgab52KabF1“aFb
1“bFa . The normal deformation is proportional to the e
trinsic curvature tensor,Kab5eb•]an. The mean extrinsic
curvature isK5Kabg

ab. The tangential deformation is th
Lie derivative ofgab along the vector fieldFa; “a is the
covariant derivative compatible withgab .

On the boundaryC, the fixed substrate constrainsdX to
lie along the contact region. We will ignore this for the m
ment, treatingdX as though it were unconstrained onC.
Then variation ofAfree gives

dXAfree5E
free

dAKF1E
C
dsla Fa . ~3!

Here l a is the outward pointing normal toC on the free
surface;s is arclength alongC. We also have that the varia
tion of the enclosed volume is

dXV5E
free

dA F. ~4!

Remote fromC only the normal projection of the variationF
plays a role in determining the equilibria of the droplet. Th
is generally true regardless of the model.

For this model, the free surface satisfiesmK5p, as fol-
lows from the first term in Eq.~3!, together with Eq.~4!.
Note that there is no boundary term associated with the n
mal deformationF. This contrasts with the tangential defo
mation whose only net physical effect is to induce a displa
ment of the boundary.

The boundary deformation we have described is not fr
the variationdX on C is constrained to lie tangent to th

FIG. 1. Definition of the quantities used in the description of t
geometry of adhesion.
4-2
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GEOMETRY OF LIPID VESICLE ADHESION PHYSICAL REVIEW E66, 041604 ~2002!
substrate. Without loss of generality, we can also assume
it is normal to the boundaryC, so that

dX5F0z̃, ~5!

wherez̃ is the outward unit normal toC on the substrate~see
Fig. 1!. We then have for the integrand appearing in t
boundary term in Eq.~3!, l aFa5 l•dX5 l• z̃ F0, where l
5 l a ea is the surface vectorl a treated as a spatial vecto
The boundary contribution to the variation of the free surfa
dXAfree is then

dXAfree5E
C
ds l• z̃F0 . ~6!

We now consider the variation of the area of cont
Acontact. The deformationdX of the free surface will induce
a variation inAcontact through the boundary that they share

dXAcontact5E
C
dsF0 , ~7!

which is a two-dimensional analog of Eq.~4!. Note that the
substrate need not be planar. We can now read off the
boundary contribution to the variationdXF, with F given by
Eqs.~1! and ~2!. In equilibrium, we require that

E
C
ds @m l• z̃1~m2w!#F050 ~8!

for an arbitraryF0. We therefore conclude that

w5m~11 l• z̃!. ~9!

Defining the contact angleQ by cosQ52l• z̃, this expres-
sion reproduces the well known Young equation.

III. LIPID VESICLE ADHESION

A lipid membrane is modeled by the Helfrich bendin
energy

Fb5aE dA K2. ~10!

For definiteness, we will focus on either of two variants
the model: in both versions the enclosed volume and the t
surface area are fixed; in the spontaneous curvature modK
is replaced byK2K0 in Eq. ~10! where the constantK0 is
the spontaneous curvature; in the bilayer couple model,
area difference, proportional to the integrated mean curva

M5E dA K, ~11!

is also fixed@21#. Thus we construct the constrained ener

F5Fb2wAcontact1m~A2A0!1b~M2M0!2p~V2V0!.
~12!
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Here m is now the Lagrange multiplier associated with t
area constraint; likewiseb is that associated with the are
difference constraint.

A. Discontinuities resolved

In the simple model discussed in Sec. II there is no ene
penalty associated with discontinuities along the cont
boundaryC. However, both the intrinsic and extrinsic curv
ture will suffer a discontinuity alongC. When the curvature
of the vesicle contributes to its energy, such a discontinu
will generally result in a singularity in the energy. Becau
this singular contribution has support onC, it is no longer
valid to decompose the energy into two parts,F5F free
1Fcontact.

This point is well illustrated by considering an axial
symmetric surface. Cylindrical polar coordinates$r,z,w% are
introduced onR3; constantw curves on the surface are pa
rametrized by arclengthl . The surface is then describe
completely oncer5R(l ) is specified. The extrinsic curva
ture tensor consistent with axial symmetry is

Kab5l al bK l 1~gab2l al b!KR , ~13!

where the scalarsK l and KR are the two principal curva-
tures, andl a is the outward pointing unit normal to th
circle of fixedl , l a5(1,0). We identify the scalar curvatur
R52 det K52K l KR , andK5K l 1KR . Now let u be the
angle that the tangent to a curve of fixedw makes with the
positivex axis. The principal curvatures are then given by

K l 5u8, KR5
sinu

R
. ~14!

The prime denotes a derivative with respect tol . We have
for the integrated mean curvature

M52pE dl R S u81
sinu

R D . ~15!

Suppose thatu suffers a discontinuityQ on the circle atl
5l 0, so that u(l )'Q H(l 2l 0), where H is the step
function. There is a finite contribution from this circle give
by

E
C
dAK52pE

l 02e

l 01e

dl u8R52pR~ l 0!Q. ~16!

The mean curvature is thus integrable across the discon
ity. In general we have the decomposition

M5E
drop/C

dAK2E
C
dsarccos~ l• z̃! ~17!

with cosQ52l• z̃, and where the notation for the normals
that introduced in Sec. II.

We note that the Gauss-Bonnet invariant for a vesicle
spherical topology can likewise be decomposed
4-3
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R. CAPOVILLA AND J. GUVEN PHYSICAL REVIEW E66, 041604 ~2002!
E
drop/C

dA R12E
C
dsDk58p, ~18!

whereDk5k̃2k free is the discontinuity in the geodesic cu
vature ofC. For an axially symmetric vesicle, the value
the latter term is 2p cosQ. ~An analogous decomposition o
the Hilbert-Einstein action arises in the study of the dyna
ics of thin shells in general relativity@24#.! As long as the
adhering vesicle remains intact, the Gauss-Bonnet invar
will not play a role in adhesion. Though each of the tw
components appearing in Eq.~18! will behave nontrivially
under deformation of the surface, their sum will not chan

The geometric invariantK2 does possess a singularity at
curvature discontinuity. We note that this singularity is ide
tical to that arising from the alternative quadratic invaria
KabK

ab. This is because the Gauss-Codazzi equationR
5K22KabK

ab, identifies their difference as the scalar cu
vatureR that according to Eq.~18! picks up a finite contri-
bution at a discontinuity. In an axially symmetric geome
the troublesome term in the bending energy isu8 2

E dAK2'2pE dl R u821•••. ~19!

The u8 2 term appearing in the integrand gives rise to ad
function squared singularity across the boundary. To eli
nate the corresponding divergence in the energy, wedo re-
quireQ50. The surface must be differentiable acrossC. It is
straightforward to bootstrap this axially symmetric analy
to the general case by introducing Gaussian normal coo
nates adapted to the boundary. In general, we require
Q50 or z̃52 l.

B. Strong bonding limit

Before addressing the full problem, let us consider
strong bonding limit,a!wA. At lowest order the bending
energyFb is ignored in Eq.~12!, and the variational problem
reduces to the minimization of the contact energy subjec
the three constraints.~In this section, we will use the lan
guage appropriate to the bilayer couple model.! WhereasQ
necessarily vanishes on the contact boundary for the Helf
Hamiltonian, it need not vanish in this limit.

Let us first consider the variational problem on the fr
surface of the vesicle. Under a tangential deformation of
surface any scalar functionF, and in particular,F5m
1bK, transforms as a divergence that is transferred to
boundary,

d uu E
free

dA F5E
C
dslaFa F. ~20!

This is becaused uuF5Fa]aF. The details ofF are irrel-
evant. SinceFa is constrained to lie tangent to the conta
region, from Eq.~5!, with F5m1b K, we have then

d uu E
free

dA~m1bK !5E
C
ds~m1bK !l• z̃ F0 . ~21!
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Note that this expression reduces to Eq.~6! when m51,b
50.

We now examine a normal deformation of the free s
face. The Euler-Lagrange equation that determines the l
vesicle equilibrium shape is obtained by demanding that
energy be stationary with respect to normal deformations
the free surface. Its derivation within the present framew
has been discussed in detail elsewhere@22#. Let us focus on
the normal deformation of the new ingredient with respec
the model discussed in Sec. II appearing in Eq.~12!, which is
M. We consider the contributions from the free surface,C
and the contact region as given by Eq.~17! separately. We
begin withM free. We have

d'M free5E
free

dARF2E
C
ds“'F. ~22!

We have usedd'K52¹2F2KabKabF, as well as the
Gauss-Codazzi equation, and“'5 l a

“a denotes the deriva
tive along l. It is now straightforward to read off the bul
Euler-Lagrange equation,

mK1bR5p. ~23!

Note that this equation is second order in derivatives.
To proceed with the determination of the boundary co

ditions, we need to identify the independent unconstrain
variation at the interface. We identify these asF05 z̃•dX
and its derivative alongz̃, “̃'F0. We will, however, con-
tinue to use“'F0 to denotel• z̃“̃'F0 . We note that the
normal deformation at the boundary, using Eq.~5! is

F5n•dX5n• z̃F0 , ~24!

and on the boundaryC, its normal derivative is

“'F5“'~n• z̃F0!

5~n• z̃!“'F01F0z̃•“'n1F0n•“'z̃

5~n• z̃!“'F01~ l• z̃!@K'1~ l• z̃!K̃'#F0 , ~25!

where we have definedK'5Kabl al b , and K̃'5K̃abz̃
az̃b .

We have used the fact thatn•“'z̃5( l• z̃)2K̃' as well as
“'n5 l aKa

beb . Therefore the boundary contribution of E
~22! takes the form

d'M free52E
C
ds$~n• z̃!“'F01~ l• z̃!@K'1~ l• z̃!K̃'#F0%.

~26!

For the boundary contributionMC , we have

dXMC5E
C
ds@Qk̃F01dXQ#. ~27!

We emphasize that this term contributesonly to the strong
bonding limit. The first term comes from the variation
arclength:dXds5k̃F0. We now exploit the fact that cosQ
4-4
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GEOMETRY OF LIPID VESICLE ADHESION PHYSICAL REVIEW E66, 041604 ~2002!
52l• z̃ to expressdXQ in terms ofdX( l• z̃); to evaluate the
latter we note thatdXQ5(sinQ)21dX(l• z̃), and that

dX~ l• z̃!5~dXl!• z̃5n• z̃~n•dXl!. ~28!

In general, we have for the tangent vectors to the free
face,

n•dXea5“aF2KabF
b, ~29!

so that

~dXl!• z̃5~“'F2~ l• z̃!K'F0!n• z̃. ~30!

Note thatdXMC need not vanish even whenMC itself does.
Finally, the induced change inM on the contact region

due to the displacement ofC is just

dXM contact5E
C
ds K̃F0 . ~31!

It is now straightforward to read off the boundary conditi
by equating the coefficient ofF0 for the corresponding ex
pression forF to zero:

~ l• z̃!~m1bK i!1~m2w!1bK̃1bQk̃50. ~32!

We have used the fact thatK can be expressed asK5K i

1K' , whereK i5Kabt
atb is the projection ofKab onto the

unit tangent toC, ta. In general, some simplification is pos
sible by using the identity

K i5n• ṫ5cosQK̃ i1sinQk̃. ~33!

In particular, for axially symmetric geometries, we no
that K i5KR is consistent with K̃ i5sinC/R, and k̃
5cosC/R, with the identificationu5C1Q.

Note that Eq.~32! is consistent with Ref.@16# where an
axially symmetric~indeed, spherical! vesicle adhering to a
flat substrate (K̃50) is described.

IV. NO APPROXIMATIONS

We now examine the general case, as given by the en
~12!, including the bending energyFb . As discussed in Sec
III A, in order to avoid discontinuities at the boundary w
imposeQ50 or l• z̃521 as a constraint.

For the tangential deformation ofFb , from Eq.~20!, and
using z̃• l521, we have immediately

d iFb52aE
C
ds K2F0. ~34!

The novel nontrivial boundary term associated with t
normal deformation of the free surface originates in the te

2aE
free

dAK gabd'Kab ~35!

contributing from the variation ofFb free. Modulo the free
bulk shape equation~described in Ref.@22#!, there remains
04160
r-

gy

d'Fb free52aE
C
ds~F“'K2K“'F!. ~36!

We note thatF5n• z̃F050, so that the first term vanishe
For the second term, onC, Eq. ~25! gives “'F5(K̃'

2K')F0 , so that the novel contribution is

d'Fb free52aE
C
ds K~K'2K̃'!F0 . ~37!

It is now straightforward to read off the boundary cond
tion ~there is no term proportional to“'F0)

2aK22bK i1aK̃21bK i12a~K'2K̃'!K5w. ~38!

If we now use the fact thatK i2K̃ i50 whenQ50, Eq.
~38! reduces to the remarkably simple expression

K'2K̃'5Aw/a. ~39!

This expression is independent ofb.
The curvatureK' is completely fixed at the boundary b

Eq. ~39!. We note that the off-diagonal term with respect
the basisl a and ta, K i'5 l atbKab5n• l̇ will not generally be
zero. Just likeK i , however, it will be completely determine
by its substrate counterpart,K i'5K̃ i' . Thus, all three com-
ponents of the curvature are fixed at the boundary.

If the substrate is flat at the boundary, we haveK'

5Aw/a. For an axially symmetric shape,K'5K,5u8 and
Eq. ~39! therefore reproduces the well known boundary co
dition @11#,

u85Aw/a. ~40!

We note that if the substrate is axially symmetric and not fl
Eq. ~40! is modified to

u82C85Aw/a, ~41!

whereC8 is the curvature along a meridian of the substra
This agrees with the expression given in footnote 14 of@11#.

V. STRESSES AT THE BOUNDARY

In equilibrium, the forces directed along the normal fro
the boundary into the membrane must balance. In Ref.@22#,
it is shown that the stress tensor for the model~12! can be
expressed as

f a5@aK~Kab2Kgab!1b~Kab2Kgab!2mgab#eb

22a¹aKn. ~42!

This is the stress tensor on the free surface. It satisfies

“a f a5pn ~43!

at each point.
Let us for simplicity suppose that the substrate is flat,

that K̃ab50. The corresponding stress tensor in that part
the vesicle which is bound to the substratef̃ a is then
4-5
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R. CAPOVILLA AND J. GUVEN PHYSICAL REVIEW E66, 041604 ~2002!
f̃ a5~w2m!g̃abẽb , ~44!

which is isotropic. Note thatfcontactdoes not satisfy the con
servation law Eq.~43!. Thus the construction of a Gaussia
pillbox of infinitesimal thickness on the boundary does n
lead to a useful identity. We note, however, thatl•f al a is the
pressure acting on the boundary due to unbalanced stre
in the free bulk at its boundary. We have

l•f al a5aK~2K'2K !2bK i2m. ~45!

Similarly,

z̃• f̃ az̃a5w2m. ~46!

The stresses must balance in equilibrium. When they do,
~39! is reproduced. This derivation is not only more efficie
than the variational argument, it also homes in immediat
on the physics at the boundary.

VI. CONCLUSIONS

We have shown how a combination of simple geometri
and variational techniques as well as conservation laws
be applied to study the adhesion of vesicles described b
eti
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geometrical Hamiltonian. This provides a useful platform f
either a numerical or perturbative approach to adhesion,
ticularly when one is interested in nonaxially symmet
shapes. Axially symmetric shapes are very special ones.

These techniques also generalize to so-called floppy
egg-carton membranes where a term penalizing curva
gradients also appears in the Hamiltonian@12,25#. Now, not
only is the contact angle fixed, but its first derivative va
ishes. It is the second derivative that will be proportional
the bond strength. The interesting shapes are also certa
not axially symmetric.

Note added in proof.Recently, Ref.@26# was brought to
our attention, where the adhesion of ‘‘linear’’ vesicles in tw
dimensions is considered.
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